—, ID ——

MTH 221 Linear Algebra Spring 2015, 1–7

Final Exam , MTH 221, Spring 2015

Ayman Badawi

QUESTION 1. (10 points). Find the solution set for the the following system of linear equations

$$x_1 + 2x_2 = 1 - x_3$$
$$x_2 = 2 - x_3$$
$$x_1 + 3x_2 = 3 - 2x_3$$

QUESTION 2.

(4 points). Given $S = span\{(1,0,0,1), (1,1,0,1), (1,1,1,1)\}$. Use Gram-Schmidt Algorithm to find an orthogonal basis for S.

QUESTION 3. (10 points) Let

$$A = \left[\begin{array}{rrrr} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 2 \end{array} \right].$$

(i) Find the inverse matrix of A if it exists.

(ii) Find the inverse matrix of A^T if it exists.

(iii) Find the third column of the inverse matrix of AA^T if it exists.

QUESTION 4. (6 points). Let $T : R^3 \longrightarrow R^3$ such that $T(a, b, c) = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & -1 & -1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix}$. Then T is a linear transformation of the point of the point

mation (DO NOT SHOW THAT).

(i) Find dim(Range) and write the Range as a span of a basis.

(ii) Does the point Badawi = (4, 5, 0) belong to the Range of T? If yes, find a point, say Ayman = (a, b, c), such that T(Ayman) = Badawi

QUESTION 5. (4 points). Imagine that K is a subspace and $\{k_1, k_2\}$ is a basis for K. Is $\{k_1, k_1 + k_2\}$ a basis for K? Convince me (briefly) that your answer is acceptable.

QUESTION 6. (9 points) For each of the below, if the subset S is a subspace, then rewrite it as a span of some basis, and tell me its dimension. If not a subspace, then give a counter-example.

(i) $S = \{(a,b) \in \mathbb{R}^2 \mid (a,b) \text{ is orthogonal to } (2,-1)\}$

(ii) $S = \{(a, b) \in \mathbb{R}^2 \mid a^2 + b^2 \le 1\}$

(iii) $S = \{f(x) \in P_3 \mid f(0) = 3\}$

QUESTION 7. (11 points).

	a	b	c	d	e
	f	g	h	i	j
A =	k	l	m	n	0
	p	q	r	s	t
	u	v	w	x	y

and suppose that $\det(A) = \pi$.

(i) Find $det(A^{-1}), det(2A^T),$

(ii) Find the determinant of
$$B = \begin{bmatrix} 1 & b & c & d & e \\ 0 & 1 & h & i & j \\ 0 & 0 & 1 & n & o \\ 0 & 0 & 0 & 1 & t \\ 0 & 0 & 0 & 0 & 3 \end{bmatrix}$$
,

For the matrix B above, what are the eigenvalues of B? Assume that B is is diagnolizable (Do not show that), for each eigenvalue a of B find $dim(E_a)$

	1	b	c	d	e	
	0	1	h	i	j	
(iii) Find the determinant of	0	0	1	n	0	.
	0	0	0	1	t	
	1	b	c	d	3+e	

QUESTION 8. (16 points) Determine whether each statement is true or false and give a brief justification for your answer (should not exceed two <u>CLEAR MEANINGFUL</u> lines)

(i) If A is a 3×3 invertible matrix, then A is diagnolizable.

(ii) It is impossible to construct a linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^4$ such that dim(Range(T)) = 3.

(iii) If A is a 4×4 matrix and 1 is an eigenvalue of A, then there is a nonzero 4×10 matrix B, such that AB = B.

(iv) If $T: \mathbb{R}^3 \to \mathbb{R}$ is a linear transformation and $T(1,4,7) = \pi$, then dim(Ker(T)) = 2.

(v) If A is a 4 × 5 matrix and
$$Rank(A) = 4$$
, then the system $AX = \begin{bmatrix} 2 \\ 5 \\ 7 \\ 9 \end{bmatrix}$ has infinitely many solutions

LO1

(vi) If A is a 3 × 3 matrix such that det(A) = 0, then the system $AX = \begin{bmatrix} 2 \\ 5 \\ 0 \end{bmatrix}$ has infinitely many solutions

(vii) If A is a 4 × 4 matrix and the system
$$AX = \begin{bmatrix} -2\\1\\0\\7 \end{bmatrix}$$
 is inconsistent (i.e., it has no solution), then the system
$$AX = \begin{bmatrix} 0\\0\\0\\0 \end{bmatrix}$$
 has infinitely many solutions.

(viii) If A is a 4 × 4 matrix and
$$C_A(x) = x^2(x-3)^2$$
, then the system $AX = \begin{bmatrix} 0\\0\\0\\0\end{bmatrix}$ has infinitely many solutions.

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com