Final Exam , MTH 221, Spring 2015

Ayman Badawi

QUESTION 1. (10 points). Find the solution set for the the following system of linear equations

$$
\begin{aligned}
x_{1}+2 x_{2} & =1-x_{3} \\
x_{2} & =2-x_{3} \\
x_{1}+3 x_{2} & =3-2 x_{3}
\end{aligned}
$$

QUESTION 2.
(4 points). Given $S=\operatorname{span}\{(1,0,0,1),(1,1,0,1),(1,1,1,1)\}$. Use Gram-Schmidt Algorithm to find an orthogonal basis for S.

QUESTION 3. (10 points) Let

$$
A=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 0 & 2
\end{array}\right]
$$

(i) Find the inverse matrix of A if it exists.
(ii) Find the inverse matrix of A^{T} if it exists.
(iii) Find the third column of the inverse matrix of $A A^{T}$ if it exists.

QUESTION 4. (6 points). Let $T: R^{3} \longrightarrow R^{3}$ such that $T(a, b, c)=\left[\begin{array}{ccc}1 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & -1 & -1\end{array}\right]\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$. Then T is a linear transformation (DO NOT SHOW THAT).
(i) Find dim (Range) and write the Range as a span of a basis.
(ii) Does the point Badawi $=(4,5,0)$ belong to the Range of T ? If yes, find a point, say Ayman $=(a, b, c)$, such that $T($ Ayman $)=$ Badawi

QUESTION 5. (4 points). Imagine that K is a subspace and $\left\{k_{1}, k_{2}\right\}$ is a basis for K. Is $\left\{k_{1}, k_{1}+k_{2}\right\}$ a basis for K ? Convince me (briefly) that your answer is acceptable.

QUESTION 6. (9 points) For each of the below, if the subset S is a subspace, then rewrite it as a span of some basis, and tell me its dimension. If not a subspace, then give a counter-example.
(i) $S=\left\{(a, b) \in R^{2} \mid(a, b)\right.$ is orthogonal to $\left.(2,-1)\right\}$
(ii) $S=\left\{(a, b) \in R^{2} \mid a^{2}+b^{2} \leq 1\right\}$
(iii) $S=\left\{f(x) \in P_{3} \mid f(0)=3\right\}$

QUESTION 7. (11 points).

$$
A=\left[\begin{array}{lllll}
a & b & c & d & e \\
f & g & h & i & j \\
k & l & m & n & o \\
p & q & r & s & t \\
u & v & w & x & y
\end{array}\right]
$$

and suppose that $\operatorname{det}(A)=\pi$.
(i) Find $\operatorname{det}\left(A^{-1}\right), \operatorname{det}\left(2 A^{T}\right)$,
(ii) Find the determinant of $B=\left[\begin{array}{lllll}1 & b & c & d & e \\ 0 & 1 & h & i & j \\ 0 & 0 & 1 & n & o \\ 0 & 0 & 0 & 1 & t \\ 0 & 0 & 0 & 0 & 3\end{array}\right]$,

For the matrix B above, what are the eigenvalues of B ? Assume that B is is diagnolizable (Do not show that), for each eigenvalue a of \mathbf{B} find $\operatorname{dim}\left(E_{a}\right)$
(iii) Find the determinant of $\left[\begin{array}{ccccc}1 & b & c & d & e \\ 0 & 1 & h & i & j \\ 0 & 0 & 1 & n & o \\ 0 & 0 & 0 & 1 & t \\ 1 & b & c & d & 3+e\end{array}\right]$.

QUESTION 8. (16 points) Determine whether each statement is true or false and give a brief justification for your answer (should not exceed two CLEAR MEANINGFUL lines)
(i) If A is a 3×3 invertible matrix, then A is diagnolizable.
(ii) It is impossible to construct a linear transformation $T: R^{2} \rightarrow R^{4}$ such that $\operatorname{dim}(\operatorname{Range}(T))=3$.
(iii) If A is a 4×4 matrix and 1 is an eigenvalue of A, then there is a nonzero 4×10 matrix B, such that $A B=B$.
(iv) If $T: R^{3} \rightarrow R$ is a linear transformation and $T(1,4,7)=\pi$, then $\operatorname{dim}(\operatorname{Ker}(T))=2$.
(v) If A is a 4×5 matrix and $\operatorname{Rank}(A)=4$, then the system $A X=\left[\begin{array}{l}2 \\ 5 \\ 7 \\ 9\end{array}\right]$ has infinitely many solutions
(vi) If A is a 3×3 matrix such that $\operatorname{det}(A)=0$, then the system $A X=\left[\begin{array}{l}2 \\ 5 \\ 0\end{array}\right]$ has infinitely many solutions
(vii) If A is a 4×4 matrix and the system $A X=\left[\begin{array}{c}-2 \\ 1 \\ 0 \\ 7\end{array}\right]$ is inconsistent (i.e., it has no solution), then the system $A X=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]$ has infinitely many solutions
(viii) If A is a 4×4 matrix and $C_{A}(x)=x^{2}(x-3)^{2}$, then the system $A X=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]$ has infinitely many solutions.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

